Salton Sea Ecosystem Restoration Air Quality Working Group Meeting

Alternatives Update

January 11, 2005 Ontario, CA

Topics

- Update on Alternatives
 - **∺ No Action & Variability Baseline**
 - **∺ Partial Sea Configurations**
 - **# Minimal Barrier Configurations**
- Project Phasing

Alternatives

- Process
 - # Presented "proposed final range of alternatives" to the Advisory Committee on December 8th
 - Described the range of configuration and the broad screening criteria
 - · Legislative and regulatory requirements
 - CEQA Guidelines

CEQA Guidelines for Range of Alternatives

- Must permit a reasoned choice
- Includes alternatives that would lessen or avoid significant effects
- Must <u>feasibility</u> attain <u>most</u> of the basic objectives
 - **# Site suitability**
 - **#** Economic viability
 - **# General Plan consistency**
 - **# Regulatory limitations**
 - **# Jurisdictional boundaries**
 - # Ability to legally acquire, control, or have access to

No Action and Variability Baseline

- No Action Alternative
- Variability Baseline Alternative

No Action Alternative

- Average annual inflow of 958,000 acrefeet/year
- Elevation at end of 75 years estimated as
 -249 feet msl
- Air Quality
 Management at elevations below -235 feet msl
- Pupfish Connectivity when Sea Salinity is >90 ppt (per HCP)

Variability Baseline

- Average annual inflow of 650,000 acrefeet/year (current estimate)
- Elevation at end of 75 years estimated as
 -263 feet msl
- Air Quality
 Management at elevations below -235 feet msl
- Pupfish Connectivity when Sea Salinity is >90 ppt (per HCP)

Project Objectives per Legislation and Statutory Mandates

- Restore long-term stable aquatic and shoreline habitat for historic levels and diversity of fish and wildlife that depend upon the Salton Sea
- Restoration of the Salton Sea ecosystem and permanent protection of wildlife dependant on that ecosystem
- Protect federal and state listed species
- Protect water quality to support beneficial uses
- Eliminate air quality impacts due to restoration
- Continued use of Salton Sea as a permanent drainage reservoir
- Assess protection of recreational opportunities and creation of opportunities for improved local economic conditions

Air Quality Management Assumptions for Development of Water Balance

- 100% of exposed playa would be subject to Air Quality Management
- 50% of the exposed playa would be managed with water efficient vegetation
 - # 1 acre-foot/acre/year desilted river water
 - # Blend saltwater into air quality management supply, ~9 ppt
 - Supplied around the exposed supply via constructed canals with turnouts to individual air quality management areas

Partial Sea Configurations

- North Sea Combined with Saline Habitat Complex
- South Sea Combined with Saline Habitat Complex
- North Sea and Minimal Barrier
- Concentric Rings

North Sea Combined with SHC

- Barrier at 14 miles north of mid-sea
- 25,000 acres SHC (18,000 acres water)
- Recirculation
- Water Treatment for Sea and SHC
- Pupfish Connectivity
- Total area of exposed playa 152,000 acres

South Sea Combined with SHC

- Barrier at 10 miles south of mid-sea
- 25,000 acres SHC (18,000 acres water)
- Recirculation
- Water treatment for Sea and SHC
- Pupfish connectivity
- Total area of exposed playa 152,000 acres

North Sea and Minimal Barrier

- Barrier at 13 miles north of mid-sea
- ~6,000 acres of marine lake in south
- 50,000 acres SHC (38,000 acres water)
- Recirculation to maintain water quality
- Water treatment for flows to habitat
- Pupfish connectivity
- Total area of exposed playa 138,000 acres

Concentric Rings

- Two Sea rings
 - # 20 ppt outer
 - **35** ppt inner 35 mar 35 mar
- 60,000 Acre Seas
- Habitat within Sea rings
- Water treatment for Sea
- Recirculation
- Pupfish Connectivity
- Total area of exposed playa 144,000 acres

Concentric Rings - Key Points

- Construct outer barrier first
 - **#** Initial construction in wet
- Limit inflow to each ring for salinity control
 - ****** Requires forebay basin and flow control at river confluences
 - **# Bypass excess inflows to Brine Sink**
- Provide circulation to achieve minimum 20 ppt salinity in entire ring
 - **300** cfs pump station in ring to increase Alamo and New River salinity
- Create habitat within Sea rings
- Construct downstream perimeter dikes as Sea recedes
- Geotubes not being considered at this time

Minimum Barrier Alternative

- Maximum created Saline Habitat Complex (SHC)
 - # Up to 75,000 Acres (65,000 acres wet)
- Shoreline Seas for water distribution and pupfish
- Water treatment for flows to habitat
- No deep marine sea
- Total area of exposed playa 135,000 acres

Minimal Barrier Alternative

- Objectives
 - **# Create maximum managed habitat with available water supply**
 - **# Create habitats in places of maximum habitat** value
 - ****** Create and arrange saline habitats that can replace estuary functions
 - **# Provide pupfish connectivity to sea habitat as possible**
 - # Provide improved water quality to habitat

Minimal Barrier - Key Points

- Construct perimeter dike for north and south shoreline sea first (extend dike as far as possible)
- Limit inflow to shoreline sea using inflow regulating structures
- Blend brine sink water with (treated) inflows to maintain 20 ppt salinity
- Construct habitat berms for Saline Habitat Complex (SHC) in dry as Sea recedes
- Distribute water to saline habitat complex
- Control SHC inflows so at least 75% area is between 20-60 ppt
- Maintain pupfish connectivity
- Treat drainage water to reduce ecorisk in shoreline sea

Saline Habitat Complex

- Supply is distributed through managed "Shoreline Sea"
 - **#** Sea serves as pupfish connectivity area
 - **#** Extend dike to capture drainages and pupfish areas
- Habitat Complex is modular and would be created as Sea recedes
- Habitat berms created along Sea contours

 - **#** limited height allows simple construction
- Various types of habitat can be created
 - # salinity, depth, flow
- Excavated areas within each SHC can create more habitat features and complexity
- Flows must be managed in each SHC
 - **# Provide access to flow control structures**

Barriers

- Major structure across Sea
 - **# Between 20 and 55 feet tall (plus over-excavation)**
 - **#** Division of Safety of Dams jurisdiction
 - **# USBR Public Protection Guidelines**
- Design Criteria
 - **# Seismic**
 - **%** Settlement
 - **# Seepage**
 - **# Offsets**
 - **# Flooding/overtopping**
 - **# Constructability**

Perimeter Dikes

- Impounds significant water volume but height is 15 - 20 feet max. (water less than 15 feet high)
- Must satisfy DSOD and USBR Public Protection Guidelines Standards
- Used in Concentric Rings, Combined configurations, and in Min. Barrier (Shoreline Sea only)

Habitat Berms

- Constructed in the dry
- Not DSOD jurisdictional
- Minimal loss of facility or habitat if failure
- Local compacted embankment
- Rip-rapped
- Used in Saline Habitat Complex (Main Berms)

Construction Considerations

- Barrier and Perimeter Dike quantities may range from 60 to 130 Million Cubic Yards (DWR Design)
 - ****** Majority assumed "well graded" rock from 1 to 4 foot in diameter
 - **# Equipment limitations**
- Quarry
 - **# Each Side?**
 - **#** Distance
 - **# Methods/Handling**
- Rock placement
 - **# Water**
 - **# Land**
- Production rates on rockfill
 - # 5 MCY per year may be possible

Construction Considerations

- Foundation
 - **★ Lack of Data / Data extrapolation**
 - **∺** Sea floor deposits (organics)
 - **# Overexcavation**
 - **# Treatment**
 - **# Settlement**
 - **# Liquefaction Potential**
- Dredging Disposal
 - **# In-Sea Disposal**
 - **# Use as Habitat**

Construction Considerations

- Air Quality
 - **♯ Construction Emissions on Rock Transport ONLY**
 - May take 20+ years to transport 100 MCY rock to site by truck (20 miles RT)
- Schedule
 - **★ Timing of habitat benefits**
 - **★ Degraded water quality**
 - **# Construction methods**

